Дано
$$- sin{left (4 a right )} sin{left (6 a right )} + cos{left (4 a right )} cos{left (6 a right )}$$
Подстановка условия
$$- sin{left (4 a right )} sin{left (6 a right )} + cos{left (4 a right )} cos{left (6 a right )}$$
cos(6*(4))*cos(4*(4)) – sin(6*(4))*sin(4*(4))
$$- sin{left (4 (4) right )} sin{left (6 (4) right )} + cos{left (4 (4) right )} cos{left (6 (4) right )}$$
cos(6*4)*cos(4*4) – sin(6*4)*sin(4*4)
$$cos{left (4 cdot 4 right )} cos{left (4 cdot 6 right )} – sin{left (4 cdot 4 right )} sin{left (4 cdot 6 right )}$$
cos(16)*cos(24) – sin(16)*sin(24)
$$cos{left (16 right )} cos{left (24 right )} – sin{left (16 right )} sin{left (24 right )}$$
Численный ответ
cos(4*a)*cos(6*a) – sin(4*a)*sin(6*a)
Соберем выражение
$$cos{left (10 a right )}$$
Раскрыть выражение
/ 4 4 2 2 / 6 6 4 2 2 4 / 3 3 / 3 3 5 5
cos (a) + sin (a) – 6*cos (a)*sin (a)/*cos (a) – sin (a) – 15*cos (a)*sin (a) + 15*cos (a)*sin (a)/ – – 4*sin (a)*cos(a) + 4*cos (a)*sin(a)/* – 20*cos (a)*sin (a) + 6*cos (a)*sin(a) + 6*sin (a)*cos(a)/
$$- left(- 4 sin^{3}{left (a right )} cos{left (a right )} + 4 sin{left (a right )} cos^{3}{left (a right )}right) left(6 sin^{5}{left (a right )} cos{left (a right )} – 20 sin^{3}{left (a right )} cos^{3}{left (a right )} + 6 sin{left (a right )} cos^{5}{left (a right )}right) + left(sin^{4}{left (a right )} – 6 sin^{2}{left (a right )} cos^{2}{left (a right )} + cos^{4}{left (a right )}right) left(- sin^{6}{left (a right )} + 15 sin^{4}{left (a right )} cos^{2}{left (a right )} – 15 sin^{2}{left (a right )} cos^{4}{left (a right )} + cos^{6}{left (a right )}right)$$