Дано

$$sqrt{- 3 x + 15} = x + 1$$
Подробное решение
Дано уравнение
$$sqrt{- 3 x + 15} = x + 1$$
$$sqrt{- 3 x + 15} = x + 1$$
Возведём обе части ур-ния в(о) 2-ую степень
$$- 3 x + 15 = left(x + 1right)^{2}$$
$$- 3 x + 15 = x^{2} + 2 x + 1$$
Перенесём правую часть уравнения левую часть уравнения со знаком минус
$$- x^{2} – 5 x + 14 = 0$$
Это уравнение вида

a*x^2 + b*x + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = frac{sqrt{D} – b}{2 a}$$
$$x_{2} = frac{- sqrt{D} – b}{2 a}$$
где D = b^2 – 4*a*c – это дискриминант.
Т.к.
$$a = -1$$
$$b = -5$$
$$c = 14$$
, то

D = b^2 – 4 * a * c =

(-5)^2 – 4 * (-1) * (14) = 81

Т.к. D > 0, то уравнение имеет два корня.

x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b – sqrt(D)) / (2*a)

или
$$x_{1} = -7$$
$$x_{2} = 2$$

Т.к.
$$sqrt{- 3 x + 15} = x + 1$$
и
$$sqrt{- 3 x + 15} geq 0$$
то
$$x + 1 geq 0$$
или
$$-1 leq x$$
$$x < infty$$
Тогда, окончательный ответ:
$$x_{2} = 2$$

Ответ
$$x_{1} = 2$$
Численный ответ

x1 = 2.00000000000000

   

Выполненные готовые работы

Так же вы можете купить уже выполненные похожие работы. Для удобства покупки работы размещены на независимой бирже. Подробнее об условиях покупки тут.

 
4.47
Lame211
Приветствую всех на своей странице. Всегда готов выполнить ваши задания (курсовые, сочинения, эссе, рефераты, контрольные работы, отчеты о практиках, задачи, доклады, дипломные работы, презентации, лабораторные работы.