На странице представлен фрагмент

Реши любую задачу с помощью нейросети.

Дано

$$25 x – 8 y = 15$$

-8*x + 35*y = 25

$$- 8 x + 35 y = 25$$
Подробное решение
Дана система ур-ний
$$25 x – 8 y = 15$$
$$- 8 x + 35 y = 25$$

Из 1-го ур-ния выразим x
$$25 x – 8 y = 15$$
Перенесем слагаемое с переменной y из левой части в правую со сменой знака
$$25 x – 8 y + 8 y = – -1 cdot 8 y + 15$$
$$25 x = 8 y + 15$$
Разделим обе части ур-ния на множитель при x
$$frac{25 x}{25} = frac{1}{25} left(8 y + 15right)$$
$$x = frac{8 y}{25} + frac{3}{5}$$
Подставим найденное x в 2-е ур-ние
$$- 8 x + 35 y = 25$$
Получим:
$$35 y – 8 left(frac{8 y}{25} + frac{3}{5}right) = 25$$
$$frac{811 y}{25} – frac{24}{5} = 25$$
Перенесем свободное слагаемое -24/5 из левой части в правую со сменой знака
$$frac{811 y}{25} = frac{149}{5}$$
$$frac{811 y}{25} = frac{149}{5}$$
Разделим обе части ур-ния на множитель при y
$$frac{frac{811}{25} y}{frac{811}{25}} = frac{745}{811}$$
$$y = frac{745}{811}$$
Т.к.
$$x = frac{8 y}{25} + frac{3}{5}$$
то
$$x = frac{5960}{20275} + frac{3}{5}$$
$$x = frac{725}{811}$$

Ответ:
$$x = frac{725}{811}$$
$$y = frac{745}{811}$$

Ответ
$$x_{1} = frac{725}{811}$$
=
$$frac{725}{811}$$
=

0.893958076448829

$$y_{1} = frac{745}{811}$$
=
$$frac{745}{811}$$
=

0.918618988902589

Метод Крамера
$$25 x – 8 y = 15$$
$$- 8 x + 35 y = 25$$

Приведём систему ур-ний к каноническому виду
$$25 x – 8 y = 15$$
$$- 8 x + 35 y = 25$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}25 x_{1} – 8 x_{2} – 8 x_{1} + 35 x_{2}end{matrix}right] = left[begin{matrix}1525end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}25 & -8 -8 & 35end{matrix}right] right )} = 811$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = frac{1}{811} {det}{left (left[begin{matrix}15 & -825 & 35end{matrix}right] right )} = frac{725}{811}$$
$$x_{2} = frac{1}{811} {det}{left (left[begin{matrix}25 & 15 -8 & 25end{matrix}right] right )} = frac{745}{811}$$

Метод Гаусса
Дана система ур-ний
$$25 x – 8 y = 15$$
$$- 8 x + 35 y = 25$$

Приведём систему ур-ний к каноническому виду
$$25 x – 8 y = 15$$
$$- 8 x + 35 y = 25$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}25 & -8 & 15 -8 & 35 & 25end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}25 -8end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}25 & -8 & 15end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}0 & – frac{64}{25} + 35 & – frac{-24}{5} + 25end{matrix}right] = left[begin{matrix}0 & frac{811}{25} & frac{149}{5}end{matrix}right]$$
получаем
$$left[begin{matrix}25 & -8 & 15 & frac{811}{25} & frac{149}{5}end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}-8\frac{811}{25}end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & frac{811}{25} & frac{149}{5}end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}25 & 0 & – frac{-5960}{811} + 15end{matrix}right] = left[begin{matrix}25 & 0 & frac{18125}{811}end{matrix}right]$$
получаем
$$left[begin{matrix}25 & 0 & frac{18125}{811} & frac{811}{25} & frac{149}{5}end{matrix}right]$$

Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$25 x_{1} – frac{18125}{811} = 0$$
$$frac{811 x_{2}}{25} – frac{149}{5} = 0$$
Получаем ответ:
$$x_{1} = frac{725}{811}$$
$$x_{2} = frac{745}{811}$$

Численный ответ

x1 = 0.8939580764488286
y1 = 0.9186189889025894

   
4.97
LVKva
Выполню работу качественно и в срок! Есть опыт в написании работ (рефератов, докладов, курсовых, контрольных) в гуманитарной сфере. История, социология, политология. Образование: социально-исторический факультет ЮФУ. Отделение -социология