На странице представлен фрагмент
Реши любую задачу с помощью нейросети.
x*33 69
—- + y*12 – — = 0
5 5
$$frac{253 x}{50} + frac{33 y}{5} – frac{99}{5} = 0$$
$$frac{33 x}{5} + 12 y – frac{69}{5} = 0$$
Из 1-го ур-ния выразим x
$$frac{253 x}{50} + frac{33 y}{5} – frac{99}{5} = 0$$
Перенесем слагаемое с переменной y из левой части в правую со сменой знака
$$frac{253 x}{50} – frac{33 y}{5} + frac{33 y}{5} – frac{99}{5} = – frac{253 x}{50} – – frac{253 x}{50} – frac{33 y}{5}$$
$$frac{253 x}{50} – frac{99}{5} = – frac{33 y}{5}$$
Перенесем свободное слагаемое -99/5 из левой части в правую со сменой знака
$$frac{253 x}{50} = – frac{33 y}{5} + frac{99}{5}$$
$$frac{253 x}{50} = – frac{33 y}{5} + frac{99}{5}$$
Разделим обе части ур-ния на множитель при x
$$frac{frac{253}{50} x}{frac{253}{50}} = frac{1}{frac{253}{50}} left(- frac{33 y}{5} + frac{99}{5}right)$$
$$x = – frac{30 y}{23} + frac{90}{23}$$
Подставим найденное x в 2-е ур-ние
$$frac{33 x}{5} + 12 y – frac{69}{5} = 0$$
Получим:
$$12 y + frac{1}{5} left(- frac{990 y}{23} + frac{2970}{23}right) – frac{69}{5} = 0$$
$$frac{78 y}{23} + frac{1383}{115} = 0$$
Перенесем свободное слагаемое 1383/115 из левой части в правую со сменой знака
$$frac{78 y}{23} = – frac{1383}{115}$$
$$frac{78 y}{23} = – frac{1383}{115}$$
Разделим обе части ур-ния на множитель при y
$$frac{frac{78}{23} y}{frac{78}{23}} = – frac{461}{130}$$
$$y = – frac{461}{130}$$
Т.к.
$$x = – frac{30 y}{23} + frac{90}{23}$$
то
$$x = frac{90}{23} – – frac{1383}{299}$$
$$x = frac{111}{13}$$
Ответ:
$$x = frac{111}{13}$$
$$y = – frac{461}{130}$$
=
$$frac{111}{13}$$
=
8.53846153846154
$$y_{1} = – frac{461}{130}$$
=
$$- frac{461}{130}$$
=
-3.54615384615385
$$frac{33 x}{5} + 12 y – frac{69}{5} = 0$$
Приведём систему ур-ний к каноническому виду
$$frac{253 x}{50} + frac{33 y}{5} = frac{99}{5}$$
$$frac{33 x}{5} + 12 y = frac{69}{5}$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}frac{253 x_{1}}{50} + frac{33 x_{2}}{5}\frac{33 x_{1}}{5} + 12 x_{2}end{matrix}right] = left[begin{matrix}frac{99}{5}\frac{69}{5}end{matrix}right]$$
– это есть система уравнений, имеющая форму
A*x = B
Решение такого матричного ур-ния методом Крамера найдём так:
Т.к. определитель матрицы:
$$A = {det}{left (left[begin{matrix}frac{253}{50} & frac{33}{5}\frac{33}{5} & 12end{matrix}right] right )} = frac{429}{25}$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_{1} = frac{25}{429} {det}{left (left[begin{matrix}frac{99}{5} & frac{33}{5}\frac{69}{5} & 12end{matrix}right] right )} = frac{111}{13}$$
$$x_{2} = frac{25}{429} {det}{left (left[begin{matrix}frac{253}{50} & frac{99}{5}\frac{33}{5} & frac{69}{5}end{matrix}right] right )} = – frac{461}{130}$$
$$frac{253 x}{50} + frac{33 y}{5} – frac{99}{5} = 0$$
$$frac{33 x}{5} + 12 y – frac{69}{5} = 0$$
Приведём систему ур-ний к каноническому виду
$$frac{253 x}{50} + frac{33 y}{5} = frac{99}{5}$$
$$frac{33 x}{5} + 12 y = frac{69}{5}$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin{matrix}frac{253}{50} & frac{33}{5} & frac{99}{5}\frac{33}{5} & 12 & frac{69}{5}end{matrix}right]$$
В 1 ом столбце
$$left[begin{matrix}frac{253}{50}\frac{33}{5}end{matrix}right]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
– Для этого берём 1 ую строку
$$left[begin{matrix}frac{253}{50} & frac{33}{5} & frac{99}{5}end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin{matrix}- frac{33}{5} + frac{33}{5} & – frac{198}{23} + 12 & – frac{594}{23} + frac{69}{5}end{matrix}right] = left[begin{matrix}0 & frac{78}{23} & – frac{1383}{115}end{matrix}right]$$
получаем
$$left[begin{matrix}frac{253}{50} & frac{33}{5} & frac{99}{5} & frac{78}{23} & – frac{1383}{115}end{matrix}right]$$
Во 2 ом столбце
$$left[begin{matrix}frac{33}{5}\frac{78}{23}end{matrix}right]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
– Для этого берём 2 ую строку
$$left[begin{matrix}0 & frac{78}{23} & – frac{1383}{115}end{matrix}right]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin{matrix}frac{253}{50} & – frac{33}{5} + frac{33}{5} & frac{99}{5} – – frac{15213}{650}end{matrix}right] = left[begin{matrix}frac{253}{50} & 0 & frac{28083}{650}end{matrix}right]$$
получаем
$$left[begin{matrix}frac{253}{50} & 0 & frac{28083}{650} & frac{78}{23} & – frac{1383}{115}end{matrix}right]$$
Все почти готово – осталось только найти неизвестные, решая элементарные ур-ния:
$$frac{253 x_{1}}{50} – frac{28083}{650} = 0$$
$$frac{78 x_{2}}{23} + frac{1383}{115} = 0$$
Получаем ответ:
$$x_{1} = frac{111}{13}$$
$$x_{2} = – frac{461}{130}$$
x1 = 8.538461538461539
y1 = -3.546153846153846