Дано

$$cos^{4}{left (3 x right )}$$
Подробное решение
  1. Заменим
    u = cos{left (3 x right )}
    .

  2. В силу правила, применим:
    u^{4}
    получим
    4 u^{3}

  3. Затем примените цепочку правил. Умножим на
    frac{d}{d x} cos{left (3 x right )}
    :

    1. Заменим
      u = 3 x
      .

    2. Производная косинус есть минус синус:

      frac{d}{d u} cos{left (u right )} = – sin{left (u right )}

    3. Затем примените цепочку правил. Умножим на
      frac{d}{d x}left(3 xright)
      :

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим:
          x
          получим
          1

        Таким образом, в результате:
        3

      В результате последовательности правил:

      – 3 sin{left (3 x right )}

    В результате последовательности правил:

    – 12 sin{left (3 x right )} cos^{3}{left (3 x right )}


Ответ:

– 12 sin{left (3 x right )} cos^{3}{left (3 x right )}

Первая производная

3
-12*cos (3*x)*sin(3*x)

$$- 12 sin{left (3 x right )} cos^{3}{left (3 x right )}$$
Вторая производная

2 / 2 2
36*cos (3*x)* – cos (3*x) + 3*sin (3*x)/

$$36 left(3 sin^{2}{left (3 x right )} – cos^{2}{left (3 x right )}right) cos^{2}{left (3 x right )}$$
Третья производная

/ 2 2
216* – 3*sin (3*x) + 5*cos (3*x)/*cos(3*x)*sin(3*x)

$$216 left(- 3 sin^{2}{left (3 x right )} + 5 cos^{2}{left (3 x right )}right) sin{left (3 x right )} cos{left (3 x right )}$$
   
4.71
infiniti777
На сайте впервые, но опыт в написании контрольных/курсовых/дипломных работ - более 3х лет. Специализируюсь на ГМУ, УП, менеджмент. Работаю с антиплагиат.вуз Решаю тесты он-лайн